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Abstract We consider the one-dimensional SU{N Y-invariant ¢-J model, which consists
af electrons with N spin componenis on a lattice with nearest-neighbour hopping ¢
constrained by the exciuded multiple occupancy of the lattice sites and spin-exchange J
between neighbouring lattice sites. The model is integrable at the supersymmetric point

= J. The ground state Bethe amsatz cquations are analysed and solved numerically
for arbitrary band filling and several values of N. The ground state energy, the chemfcal
patential and the spin susceptibility are obtained as a function of band filling. The
elemental charge and spin excitations are detived for arbitrary NV and band filling. The
energy of the charge excitations vanishes at the Fermi surface. The Fermi velocity has
@ maximum as a function of band Glling, vanishing for the empty and full bands. The
spinwave velocity is inversely proportional to the susceptibility. For exactly one electron
per site the charge fluctuations are suppressed and the Bethe ansarz equations map onto
those of the SU{N)-invariant Heisenberg chain.

1. Introduction

The two-dimensional Hubbard mode! is believed to possess the main features
necessary to explain many of the fundamental low-energy properties of the cuprate
high-temperature superconductors [1]. The key ingredient is the motion of highly
correlated electrons within the CuO planes. This refers only to low-energy properties,
since the hipher-energy excitations, as measured e.g. by photoemission, involve several
bands and their complicated dispersions. In the limit of very large on-site Coulomb
repulsion the Hubbard model can be mapped onto the i-J model with ¢ > J, for
which numerous properties have been studied with approximate methods {2,3]. It
has been conjectured [1, 4] that the {D and 20 variants of both the Hubbard and ¢-J
models, have properties in common. Exact results in 1D are often more accessible
than 2D ones and may provide a testing ground for approaches intended for more
complex problems. In this paper we solve exactly the degenerate supersymmetric 1D
t-J model, for which there is no direct application to experiments.

The one-dimensional t-J model for spin ] was found to be integrable at the
supersymmetric point by Sutherland [5]. This supersymmetry is related to the SU(3)-
invariant Heisenberg chain of spin 1. The Bethe ansatz equations, the classification of
states and the thermodynamic eguations for this mode! were presented in [6). These
results were used by Bares and Blatter [7,8] to calculate explicitly the spectrum
of elementary excitations and by Kawakami and Yang [9] to obtain the exponents
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314 P Schiottmann

for the long-distance asymptotic of correfation functions. In [10] we constructed an
asymptotically exact solution in the low-electron-density limit for coupling parameters
deviating from SU(3) symmetry, i.e. t # J and Lee and Schlottmann [11] extended
the Bethe ansatz solution at the supersymmetric point to an arbitrary number of
spin components N. The thermodynamic Bethe ansaz equations for the N-fold
degenerate supersymmetric i—J model were derived and discussed by Schlottmann
[12]. The spin and charge excitations of the one-dimensional degenerate Hubbard
model as well as the properties of the associated metal-insulator transition at non-
zero U {for N > 2) were presented in [13, 14].

In this paper we extensively discuss the ground state Bethe ansatz equations and
derive the excitation spectrum of the 1D supersymmetric {—J mode] with N spin
components (N = 25 + 1), generalizing in this way the results of [7,8,12]. The
procedure to be followed is in complete analogy with that described in [13].

The model under consideration is the following

— + + + +
H= —Z P (ciuci-{-ls + ci+£scis) P+ Vz NisMigar T chiscis‘ci+la'ci+ls
is

tas' iss’
(L1)

where the hopping matrix element ¢ has been equated to 1. Here ¢;, annihilates an
electron at the site ¢ with spin component s, (|s] € S), n;, is the number operator, P
is a projector excluding the multiple occupancy of every site, V' is a charge interaction
independent of the spin and J is & spin exchange interaction. The generalized spin
S can be thought of as composed of spin and orbital degrees of freedom.

Several special cases of this model are worth noting.

(i) If J = 0 the spin componenis do not play a relevant role, and we only
have to distinguish occupied and empty sites. The model then reduces o the spin-%
anisotropic X X Z-Heisenberg chain.

(ii) If there is one electron per site there is no dynamics of charges and the system
is just the Heisenberg chain of spin .5 with SU(2S + 1) invariance [5]. In addition,
model (1.1) is integrable for arbitrary band filling in the following cases:

(i) J = -V = %1

(iv) J =V =+1.

Sitwations (fi) and (iv) are related to SU(2S + 2} invariance of the model with
(25 + 1) spin and one charge degree of freedom. The situation J = -V =1
corresponds to the supersymmetric limit of the traditional {—J model [11] (the t-J
mode] represents the hiph-correlation limit of the degenerate Hubbard model only
if J < t). The ground state properties and the excitation spectrum of this case for
arbitrary spin are the subject of this paper.

The rest of the paper is organized as follows. In section 2 we restate the discrete
Bethe ansazz equations derived previously in [11]. The structure of the ground
and excited states is discussed and integral equations relating the densities of the
corresponding rapidity sets [12] are restated for the zero-temperature limit. The
zero-field ground state properties as obtained by numericaily solving the ground state
integral equation for the charges are discussed in section 3. The elemental charge
(adding or removing one particle from the system) and spin excitations are derived
in sections 4 and 5, respectively, for arbitrary band filling and degeneracy N. A
summary and conclusions are presented in section 6.
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2. Bethe ansatz equations

The diagonalization of the Hamiltonian (1.1) for J = —V =1 is a straightforward
peneralization of the procedure presented in [6]. The two-particle scattering matrix

is given by

S(k, k)= —L"P2 4. i p 2.1
) = 1 T o= pr 1 &1

where 1 is the identity matrix and P permutes the spin indices of the two electrons.
Here p is related to the wavepumber &k by p = cot(k/2). It is easy to verify that
(2.1) satisfies the triangular Yang-Baxter relation [15] and that the scattering matrix
for a multiparticle scattering process can be written as a product of two-particle
scattering matrices, (2.1).

The exact solution of the model is now obtained following a standard procedure
[11,15,16]). On imposing periodic boundary conditions, the N, -particle problem
reduces to the simultaneous solution of a set of N, eigenvalue equations. This
eigenvalue problem has been solved by Sutherland [16] for an arbitrary Young tableau
by means of a sequence of additional (N — 1) nested Bethe ansdtze. Each Bethe
ansatz leads to a new cigenvalue problem with the number of spin components
reduced by one and gives rise 10 a set of rapidities. This procedure is repeated until
all internal degrees of freedom are eliminated. As a result, V sets of rapidities
{gf,?},z =0,...,N — 1, are obtained, which are self-consistently determined by the
Bethe ansatz equations [11, 12]. The set [or | = 0 corresponds to the charge rapidities,

O =p, = 3 cot(k, /2), where {k,} are the wavenumbers of the particles, while
r.he other sets are associated with the spin degrees of freedom. All rapidities within a
given set have to be different. The rapidities are not independent of each other but
coupled by the discrete Bethe ansaz equations [11, 12]

© _ Na o gy £9 _ E(U ~ i
Se T3t} Ty The TE oM, (222)
( ‘(:0) + 5 ) ;El ‘E(UJ E(U .
ﬁ E“) {UJ J"ﬁl EU) ‘s(f B _ lv Aja:':].:;.; l,_.(1') £[f+lj %I
a1 ég) {(1) + Bet 5(1} U n + E {3—.1 ‘E“) 6(“"” + 2]

l:—.],-..,N“‘l A‘qu e MN=O Q=1"""MI
(2.20)
where N, is the number of sites in the chain and A, is the number of rapidities in

the set {gEP}. If ng_,, denotes the number of electrons with spin component m and
M;.y = M;—n,, then necessarily No=My2M 2M2--2My_ 1 2My=0
This solution corresponds to the Young tableau (M, — M, M| — My, ..., My _; —
Mpy_ys Mp_ — My ). Note that the Bethe ansaz eigenfunctions are only a basis of
states within this subspace [17]. The energy eigenvalues of the Hamiltonian (1.1) and

the magnetization are given by

Mo 1
E=-2N+2Y —Z2— (23a)
o= 1(6 ) +3
N-i

S, =3N-1N,- > M, (2.3b)

I=1
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The ground state and the excitations of the system are given by the self-consistent
solutions of equations (2.2). The rapidities have, in general, complex values and in
the thermodynamic limit (large N, N, and M), they can be classified according to
[12]

(i) real charge rapidities, belonging to the set {€5”}, which correspond to unpaired

propagating electrons,

(ii) complex spin and charge rapidities, which correspond to bound states of
electrons with different spin components, and

(iif) strings of complex spin rapidities, which correspond to bound spin states.

In the ground state we only have particles in states corresponding to classes (i)
and (ii). The strings of class (iii} represent excited states and will not be considered
here. Since only electrons with different spin components are scattered, iLe. experience
an effective attractive interaction, we may build spin complexes of up to (25 4+ 1)
electrons. A complex of n electrons (n € 25 + 1) is characterized by one real £~V
rapidity and in general complex £/} rapidities, { < n — 1, given by

P =D (if2)p  Ign-1428

4

p=—(n—t-1,—(n—-0{=-3),...,(n—1—-1). 24

These spin and charge strings form classes (i) and (ii). There are then V =28 4 1

sets of real rapidities {£*~"} in the ground state. Here o is the running index

within a set. All rapidities within a given set have to be different. This property leads

to Fermi statistics for rapidities associated with charges and spin waves, although spin
waves have an integer spin and are actually hard-core bosons.

The above rapidities are inserted into equations {2.2) and the resulting coupled
equations for the real {{&.n} are logarithmized. This generates a set of integer
quantum numbers for each set of rapidities. In the thermodynamic limit we define
the usuaj distribution functions pt2(&) for the real rapidities €4 and similarly the
‘hole’ distribution functions pg)(ﬁ). ‘Particte’ and ‘hole’ densities are not independent
in view of the Fermi staristics of the rapidities, but coupled by sets of linear integral
equations. Fourier-transforming the equations, we have

P
A) + BD(w) + Y A w) exp [—I-L;—ltf +a- p;,q)}

q=0
= exp(—({ + 1)|w]/2). 2.3)
Here the caret denotes a Fourier transform, p, , = min{({,¢)—é6;,and [ =0,...,28.

The energy of the system and the number of particles (per site) for each spin
component, 7, are given by

sinh [Yw(p; , + 1)]
sinh{}w)

E=-2N,+2N, 2253 /d{ Amiee) -—!L(:i"'—i—)-— 2.6)
m=0 62 + 3(""‘ + 1)2

28
n= /dép“”(f} e

g=25-1
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and the total number of electrons becomes

28 25
nw= NN, =Zn1= Z([-i-])/d{fpu)({). (2.8)
i=0 I=0

These equations differ only in their driving terms (independent terms) and the
expression of the energy from the corresponding ones for the N-component one-
dimensional fermion gas with attractive é-function interaction [18] and the degenerate
Anderson impurity in the U — oo limit [19].

In the ground state the rapidities are densely distributed. Minimization of the,
energy vields that the densities are symmetric functions of £ about £ = ( with
PD(E) = 0for |§] < B; for { = 0,...,25. The p{"(£) are the complementary
functions, which vanish for {£] > B,. The integration limits B, are determined by the
number of particles with each spin component, equation (2.7). The { = 25 rapidities
correspond to zero-spin clusters of NV electrons, each electron having a different spin
component. In the absence of external potentials (magnetic or crystalline fields) the
Fermi sea consists only of these clusters (assuming that the number of electrons is
a multiple of N), represented by the strings of length 25. In this limit all B, are
infinite, except B,; which we denote by Q. @ 5 determined by the band filling;
@ = 0 corresponds to the fuil band, while if Q = oo the band is empty.

To study the response of the ground state of the system to a small level splitting,
as well as 1o obtain the spectrum of elemental excitations, it 5 convenient to rewrite
(2.5) in the following form

A + o (E) + f ag' 77 (ENG(E -

251 [ .0 -B.,
=-2 [ Lo+ }df’ A Pl = €) 4 DIE) @9

m=0

25~1

oo -B
(m) ¥ ? r
(&) + [ + }df. A(EN
SCESM YN

X / g;exp [1(6 —&Dw + IL;I] Gm+l q+l( w)

¢ t (28) ¢ ot '

- /_st PPN Fyp (€ = ) + Fis o (€) @10)

where
1 3 3
=1 i,.1..¢ (L Lif
D{¢) = Nch{”’(z"'N"' N) ¥ ( N)} (2-12)
_ dw e, sinh(Jw(m+1)) 1 sinfw{m + 1}/N]

Fn(8) = f Zvre sinh(3wN) ™ 'N cosh[2=£ /N] + cos[x(m + 1) /N]

(2.13)
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and
G, ,(w) = sinh (wmin(q, 1)) sinh (§w (N — max(q,{))) /sinh ({w N} sinh (Fw) .
(2.14)

Here Re denotes real part and + is the digamma function. The energy can be
expressed in terms of the hole states for strings of length 285

2N, 1 Q
E=-2N + —= N {1}9 (1-!- F) - '(,b(l)} —27N, ./_QGE ngSJ(E)D(f)
251
+20N, 3 f A€ ™€) Fyg _ n(E).- @.15)

For N = 2 these equations reduce to the Bethe ansaiz equations derived previously
in [6,8] for the traditional supersymmetric ¢—J model. For arbitrary NV, the kernel
of the integral equations (2.10), ie. G, o(w), has the characteristic form dictated
by the SU(N) invariance. This kernel appeared previously in related problems: (i)
the SU(N)-invariant Heisenberg chain [5,20], (ii) the N-colour Fermi gas in one-
dimension interacting via a §-function potential [18,21], (iii) the Coqblin-Schrieffer
model [22,23], and the degenerate Anderson model with excluded multiple occupancy
of the f level [19].

An alternative formulation of the Bethe ansaiz equations for the ground state is in
terms of the thermodynamic energies for each set of rapidities. The thermodynamic
energies are defined as

Pl 16" = exp(e,/ T) 2.16)

in the limit 7" — 0. For a small Zeeman splitiing they satisfy the following set of
integral equations [12]:

Q
€25 () + [_ 4 as(€)G(E = ©

281 o -B,
= —2—p+2rD(€) - { -+ }dﬁ’f (E)F (€' =¢) @217
” VAR CRC
25-1 oo -B, w
em(£)+;}[]5q+]_w ]dae(a)[ ——exp{a(e &) '2‘] Cmstas()

-] 08’ 635(6)) Fr(§ — &) 4 2% Fyg_n(£) = (m 4 1)(2S ~ m) 2

(2.18)

where m = 0,...,25 — 1 and u is the chemical potential. The ¢, (&) are symmetric
functions of £, which decrease monotonically with increasing |&[. The functions
€, (&) are typically positive for £ = 0 and negative for large £. From their definition,
equation (2.16), the functions ¢, (&) have zeroes at £ = +B,,. This defines the
relationship of the chemical potential and the magnetic field with the integration
limits B,,. Note as well that the integral equations determining the o{') and the ¢,
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are the same except for the driving terms. The density functions for particles and
holes can be derived from the thermodynamic potentials if we modify the driving
terms in equations (2.17) and (2.18) by replacing

2n D(&) = 2wz D(€) 2 Fyg_ (&) — 2n2eFop_,. (£).

Differentiating (2.17) and (2.18) with respect to z, we obtain by comparison with
equations (2.9) and (2.10) that

P™NE) = (1/2m)B¢,. [0z if || > B,
o€y = (1/27)8¢,, /82 if || < B,

with Bys = Q.

In the following three sections we discuss properties of the ground state and
elemental excitations of the degenerate supersymmetric #-J model which we obtain
by numerically solving the Bethe ansatz equations stated above.

(2.19)

3. Ground state properties

In the absence of magnetic and crystalline fields, B, = co for mn = (,...,25 - L.
Hence, equations (2.9) and (2.10) reduce to a single integral equation for p25)(€)
{we now suppress the superscript (25} in this section). The band filling is controfled
by the parameter €}, and decreases with increasing @ (Q = 0 corresponds to the full
band, N, = N, while for == co the band is empty). Discretizing the integral (using
about 100 points), the integral equation is then straightforwardly solved numerically
by iteration. Note that both p(£) and p,(£) are symmetric and non-negative (since
they represent densities of states) functions of £.

We first consider the empty and full band limits {n = N /N, = 0 and 1,
respectively), which can be treated analytically.

(i) Empty band. For n = 0 we have @ = oc and the solution of the integral
equation for p,(£) can straightforwardly be obtained by Fourier transformation

pu(€) = (1/=)(N/2)/[£* + (N/2)]. G.1)

The energy of the system is of course zero in this limit and the chemical potential
uo=-=2

(ii) Nearly empty band. If n is small but non-zero (low electron density), then @
is large but finite, and the integral equation can be solved iteratively by reducing it
to a sequence of Wiener—Hopf integral equations. The chemical potential . i then
slightly above —2. After a lengthy calculation we obtain [6, 11, 12]

Q=(2+p)"1? {1 +($/4m)2+ ) P In(Z 4 1) + - }

and to leading order the number of electrons and the energy are given by
n= NN, =(N/n)(2+ )"/ 3-2)
E/N, = —2n+ n?n?/3N? (3.3)

as expected from the van Hove singularity of 2 (one-dimensional) free-electron density
of states.
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(iii) Full band. The situation of a full band can also be treated analytically. No
holes corresponds to @ = 0, so that p, = 0 and
p(&) = (1/=NYRe{vp (3 + 1/N +i&/N) - (1 +iE/N)}. (34
The following relations are easy to verify

Ne=n [Tane=1  m=E{e(i+4)-vm)-2 o5

a

= 2/N B0+ 1/N) - p(h) -2

(iv) Almost full band. If Q is small but finite the system has a low density of
holes. In this case the integral equation (2.9) can be solved iteratively [6]. We obtain
for the number of electrons and the energy

n=N /N, =1-2Q/=N){v (3 +1/N)-¢(3)}
E/N, = 2/N)[¥(1+1/N) - ()] -2
—{@/N)[w G+ UN)—w(3)] -2} 1 -n]. (3.6)

The general solution of the integral equation (2.9) for p,(£) can only be obtained
numerically. The ground state energy is then calculated via equation (2.15). The
energy density E/N, in units of ¢ and as a function of n is shown in figure 1 for
several N. These curves interpolate between the empty and full band results derived
above analytically.

0.0 [T T T B.0 [T T
Q5 .
—
5-1.0— I
3 N=2 ]
sk N=3
N=4
_2_0'.!..4_L.1v..‘.l-..,h'\.h.er 2 T 1 s
040 0.2 0.4 0.6 0.8 1.0 o.c 02 04 0.6 0.3 1.0
n n

Figure 1. Ground state energy (in units of the Figure 2. Chemical potential g (in units of the
hopping matrix clement ¢) in the absence of hopping matrix element £) as a function of the
external fields as a function of the electron density  electron density n for N =2, 3, 4 and 6.

nfor N=2 3 4 and 6.

The chemical potential is the energy required w© add or remove one electron from
the system, ie. 4 = 8E/3N,. A change in N, implies a modified integration limit
2 and hence a change in pfs). Henee, we have [§, 13, 24]

w=[0(E/N,)/3Q/[8n/2Q). X))
Denoting p'(£) = dp(£)/dQ, we have that o' obeys the following integral equation:

Q
PI(§) + (&) + /_Qdﬁ' P0G - &) = —[G(§ - Q)+ G(£ + Q)e(Q). (3.8)
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Note that p’(£) is an even function of £. The numerical solution of this integral
equation is aiso straightforward using the method described above. One finally obtains
that the chemical potential is piven by

Q Q
p=-2+42r [ZD(Q)ph(Q) +_/_Q dg pﬁ(f)D(E)] / [&%(Q) + f_Q dé PQ(E)] .
3.9

£ as a function of n for several N is displayed in figure 2. These curves interpolate
between the empty and full band limits derived above.

Next we discuss the static susceptibility at 7" = O for arbitrary band filling in the
small Zeeman splitting limit. In a small magnetic field all B,, (m =0,...,25 - 1)
are finite but large. The difference in population of Zeeman levels is proportional
to H, while the feedback of the field on p(®) and ¢, is proportional to H? and
can be neglected. In other words, we use the zero-field resuit for p®5) and ¢,g.
The numerical solution of equation (2.17) for €, in zero field follows in complete
analogy with the procedure discussed above for the solution of (2.9) for o{2). For a
given Q we determine u so that ¢,5(+@Q) = 0. This is an alternative way to obtain
the chemical potential, which agrees with the one discussed above.

Consider now equations (2.18) with the ¢,¢-term (evaluaied in zero field) as part
of the driving term. For sufficiently small magnetic fieids, B,, » Q so that the
right-hand side of (2.18) can be approximated by

2z sin[w{m + 1}/ N] T e, 27€! ‘ H
N~ cosh[2rEN] [1"'5;]:@‘15 GXP( N )fzs(é )]—(m+1)(2s_m)._i._

(3.10)

The driving terms of the corresponding set of integral equations obeyed by the density
functions p(™), equation (2.10), are obtained by dropping the field-dependent driving
term in (3.10) and using the relations (2.19). Using the definition of the magnetization
it is possible to show that the zero-field and low-field magnetic susceptibilities of the
system are given by [6,20, 21}

1+ [, de" exp(2r€ [N)pi*5)(&")
L+ (1/27) [2, d&" exp(2mE' [N ) er5 (&)

x(H)/x(0) = [t+ 1/(N|In H|) + 1/(N}In H[P In{1/(N]ln HD] + ---] . (3.11b)
The limit n = 1, ie. @ = 0, corresponds to the SU( N )-invariant Heisenberg chain.
In this limit the zero-field susceptibility is given by

Xneis(0} = (1747 ) N(N? — 1) /6. (3.12)
(Note that the definition of the exchange coupling J here differs by a factor of 2
with respect of that of [20].) The N-dependence of this expression is determined
by the T = 0 Curie constant of the Heisenberg chain. In figure 3 we show the
dependence of x(H = 0)/xu. 0on the band filling. Since these curves are almost
independent of N, only the ones corresponding to N = 2 and N = 6 are presented.
The susceptibility diverges as n — 0 proportional to (2 4+ x)~Y2, as a consequence
of the one-dimensional van Hove singularity. In a small but finite field we obtain
logarithmic singularities caused by the interference between the two Fermi points
{scattering across the Fermi surface) [20,21].

x(0) = (1/4xH)[N(N? — 1) /6] (3.11a)
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Figure 3. Zero-field static susceptibility, x(n),
normalized to its value for n = | (Heisenberg
chain) as a function of ejectron density n for
N = 2 and 6 Note that the curve is almost
unjversal with N. The susceptibility diverges as
el e L s L n — 0 as a consequence of the one-dimensional
van Have singularity.

A N ()
6C ~ N WbV ae uww D
T

4. Elemental charge excitations (holons)

In this section we study the particle and hole excitation spectrum of charges. Charge
excitations are obtained by adding or removing a rapidity from the set {55,25) }. This
set corresponds to the spin-zero clusters of /V electrons, represented by strings of
length N. All other sets of rapidities involve spin excitations. Note that these spin
and charge excitations are decoupled; since the integral equations are linear, the
superposition principle applies and excitations are additive and independent. Their
behaviour is soliton-like. The excitation spectrum for N = 2 has been derived in
[7,8]. We present here the generalization to arbitrary spin-degeneracy. We follow
a similar procedure to that employed for the one-dimensional Hubbard model by
Coll [24] (¥ = 2) and Schlottmann [13] (arbitrary N). We explicitly distinguish Aole
states, Le. removing one rapidity, and partcle states, i.e. adding one rapidity. We Limit
ourselves to the case B, = oo, m = 0,...,25 — 1, Le. the system in the 2bsence of
external potentials.

4.1. Hole states

We first consider the simpler situation of a full band, n = 1 and @ = 0. In the
absence of holes we have

AENEy =D& APy =0

To simplify the notation we drop the superscript (25) in the string density distribution
function. If one hoie is introduced with rapidity &, we have py(£) = (1/N,)6(E—-&,).
Consequently the rapidities are rearranged and their density changes by the amount
{1/ N )Ap(€). From (2.9) we obtain

Ap(€) = —8{& = &) — G(& ~ &) CRY
and the change in energy associated with the removing of the charge is
AE4(£) = (2/N)Re {4 (3 +1/N) = ¥ (3)

~ b (5N +ig/N) 49 (3 +6/N)} - “2)

The excitation energy vanishes for £, = 0 (Fermi level) and increases monotonically
with |&,] reaching its maximum of

/N {w (F+1/N) - v (H)}
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as )&,| tends to infinity.

We now consider hole states in a partially filled band. Only rapidities with £, >
€2 can be removed. Removing a charge rapidity introduces an additional driving term,
50 that the solution of the integral equation is of the form py (&) 4+ Ap,(£}/N,, where
pp(€) is the ground state distribution and Ap, (&) accounts for the rearrangement of
the rapidities due to the missing one. 4 p,{£) satisfies the following integral equation:

Q
an&=- [ 9 AP (§IG(E ~ 6) - 56— &) = GLE ~ &) @23)

The §-function on the right-hand side of (4.3) represents the missing £-vaive, while
the other terms correspond to the ‘self-energy’, i.e. the redistribution of the rapidities.
We now isolate the &-function term in the equation for Ap, by writing

Apy(&) = ~8( - &) + & p(E). @.4)
Here A5, satisfies the following integral equation:

Q@
&) == [ 4 Bae)GE - €)= Gle- &) @5)
which is similar to the one satisfied by pf (&), equation (3.8). The numerical solution
of (4.5) is then straiphtforward. A g, has the following symmetry

Aﬁh(& 3 ‘EU) = Aﬁh(—f, _50)

The integral f_QQ dé A, (€) does not, in general, vanish. Hence, the integral over
App(€) is not equal to —1 as it should be if exactly one charge has been removed.
There i an additional contribution which we have nepiected so far. By eliminating
one charge the integration limit @ has also 0 be readjusted [13, 24], since the number
of particles has changed. This change of @ is smali, of the order of 1/N_, but of
the same order as Ap, (&), so that it cannot be neglected. Denoting with @, and
@ the integration limits before and after removing the charge, we have invoking the
conservation of particles

Qo
CRENE 1+f_Q o€ A B (6). “.6)

We may either use Q or ¢J; on the right-hand side of (4.6), since the difference is of
higher order in 1/N,. The energy of the excitation is given by

Qo
AE4(&) =2 (1 + / d¢ Aﬁh(&))

Qo
~2x / dE AB(€)D(E) - 27 D(Eg) + E(Q) - E(Qy) @7

Qo

where the last two terms account for the change in ground state energy due to the
change in Q. Since @ — @, is small, we approximate

Qo
E(Q) - E(Qy) =(Q@ - Qu)% = u (1 + fQ d¢ A,ah(fj) (4.8)

where 4 is the chemical potential calculated before and we used (4.6) to eliminate

(@ - Q).
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4.2, Particle states

Again we first consider the simpler situation of an empty band, » = 0 and
Q = oo, which can be solved analytically. In the absence of particles all the
density functions p(™) are identically zero. Adding the charge rapidity £, yields
then p(25)(€) = §(£ ~ £,) and the change of energy is given by (note that for the
empty band g = -2)

B E4(&) = 2N/2) /(&5 + (N/2)]. 4.9)

The excitation energy vanishes for |£,] — oo (Fermi level) and increases monotonically
when |¢,] is reduced, reaching its maximum of 4/N for £ = 0.

We now consider particle states in a partially filled band. Only rapidities with
[€o] < @ can be added. Adding a charge rapidity introduces an additional driving
term and changes the distribution of rapidities by an amount Ap,(£)/N, which
satisfies the following integral equation (we again drop the superscript {25)):

Q .
am@=- O Ap(EGE - 6) + 86 - &), 4.10)

The é-function on the right-hand side of (4.10) represents the added particle and the
integra] is the self-energy effect due to the rearranged rapidities. We again write

Apy(€) = 8(& ~ &) + B4(E) (#.11)

where A p, satisfies the following integral equation:

Q
NAGESS O BAEIGE - 6) = Gl = &) @.12)

This integral equation is the same one satisfied for holes, equation (4.5), except that
now |§,| < Q. Its numerical solution is then straightforward and Apj (€,§,) =
App{~§, —6p)-

The energy of the particle is given by

o
AE,(&) =2 (1 + /;Q dg &ﬁh(f))

Qe
+ 2 /:Q dé Ap (E) D)+ 2 D(€)) + E(Q) ~ E(Qy) (4.13)

where the last two terms account for the change of the integration limit @ due to
the addition of one particle. From the conservation of the number of particles, we
obtain

Qo

E(Q) - E(Qy) = —u (1 +f

dg &ﬁh(f}) (4.14)
-G

where u is the chemical potential.

Note that, except for the overall sign, the expressions for the hole and particle
excitation energies are the same, although one is valid for |£,} > Q and the other for
j€ol < Q. Hence, for §; = %£Q, their excitation energies are equal and necessarily
zero. & = @ corresponds to particles and holes at the Fermi ievel.
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4.3. Momentum of charge excitations

Although the charpe rapidities or the wavenumbers {k } are frequently called
momenta, they do not represent the physical momentum of the particles and holes.
The physical momentum is given by the charge quantum number of the particle added
or removed and hence is related to the density functions p(2%)(£) and p{**’(¢) via
their definition [8, 13, 24]

p=2wsgn(es) [ a6 (40 + ). (415)

With this definition, the momentum of the charges is zero if [§| — oo, ie. at the
centre of the Brillouin zone. (Note that from the amsez for the wavefunction in
equations (2.2} the rapidities 55,?) = %cot( k. /2), where k, is a wavenumber. Hence,
the sign of k, correlates with the one of £ and while |k, | increases, [£] decreases.
There i$ a change of branch at £ = 0.) The maximum momentum, p,,.., is reached
when £, — 0.)

Puax = F—mn{ N ~-1)/N. (4.16)

The excitation spectrum is then symmetric with p. For £, = £Q, equation (4.15)
yields pr = £#xn /N, where = is the band filling. Recalling that for |{y| > @ the
excitations are holes and for |£,| < @ they are particles, we have that pp corresponds
to the Fermi momentum. It is also clear that the crystal momentum is only defined
modulo 2.

Analytic results can be obtained in the limiting cases of an empty and full band.
For the empty band the momentum of the added particle is

p = 2sgn(&y) [(m/2) —arctan (2€,/ V)] (4.17a)
while for the full band the momentum of the created hole is given by

T [r<%+ 1/N +i€p/N) T(4 = i6y/N)

= — R .17
PR T+ 1/ N = i€/ N) T(k + 186/ M) (17

Here I' denotes the I' function.

4.4. Fermi velocity

The Fermi velocity of the charge excitations is defined as the absolute value of
dA E, /dp at the Fermi level and is obiained as

dAEch(EU)] /{dp]
e e = - (4.18
= [259] /1%], )
The denominator is straightforwardly obtained from equation (4.15),

[dp/déy), = 277 (Q). (4.19)

In order to get the numerator, we differentiate either equation (4.5) or equation (4.12)
with respect to £, Denoting

¥ (&) = (4D 5, (£)/96y)ey=q
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we have that ¥ satisfies the following integral equation

Q -
wo=-[ wuoae-o- (L) e

dg,
and
dAEch(Eu) — <
|28 LFQ =2+ ) (1+ [ e wm)
? dD(&y)
+ 27 [ o dE W (EYD(€) + 2x (—d 3 )a.,=q . @.21)

The derivatives of G and D with respect to £, can be expressed in terms of the
imaginary part of trigamma functions.

It is straightforward to see that the Fermi velocity vanishes in both the empty and
full band limits.

4.5, Results

The results are obtained by numerically solving the above integral equations. The
charpe excitation spectrum (in units of the hopping matrix element ¢) for various
band fillings is shown in figures 4(a)—4(d) for N = 2, 3, 4 and 6, respectively. As
discussed before, AE, =0 for £, = @, i.e. at the Fermi level pp = wn/N. Close 0
the Fermi level, the excitation energy is proportional to (» — pg), the proportionality
constant being the Fermi velocity. The Fermi velocity is non-zero if n #0or n % 1,
the latter is implied by the fact that the system is an insulator by construction. The
Fermi velocity (in units of ¢} for N = 2, 3, 4 and 6 as a function of band filling is
plotted in figure 5. The height of the maximum of v decreases with V.

The particle-hole continuum for the charge excitations is obtained by adding the
energies and momenta of a particle excitation with a hole excitation. The momentum
of the combined excitation should be considered modulo 2w, For N = 2 there
are excitations for every momentum p = p, + p,;. This is no longer the case if
N > 2, where we have intervals in momentum space for which there are no charge
particle-hole excitations.

5. Spinwave excitations

In this section we study elemental Spin excitations for the degenerate situation
(spin singlet state), ie. in the absence of external fields, so that B, = oo for
m = (,...,25 — 1. In other words, the sets of spin rapidities (strings of length
less than 25) are empty, so that it iS only possible to add one rapidity (particle
excitations), but noi to remove a rapidity (hole excitation). The ground state consists
of an equal number of electrons with each spin component. Adding one £(™) rapidity
(m < 25} corresponds t0 a spinwave excitation with the simultaneous addition of
(m + 1) electrons (see equation (2.8)) [6-8, 13,24].
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Figure 4 Charge excitation energy (in units of the hopping matrix element ) as a
function of crystat momentum over w for (@) N =2, () N = 3, (¢) N = 4 and
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two intermediale electron densilies are shown. A Eg vanishes at the Fermi surface,
|[p] < mn corresponds to hole states, while [p| > w1 corresponds to particle states. The
range of the spectrum is confined 10 [p|/n £ I —n + /N,

Figure 5. Fermi velocity in units of the hopping
matrix element ¢ as a function of band filling n for
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5.1. Elemenial spinwaves
Consider B,, = oo for all m. Adding 5™ yields
P™IE) = 66~ &™) G.1)

which gives rise to a rearrangement of the charge rapidities via equation (2.9). The
change in the density of charge rapidities is given by

Q
8O =- [ ae Al NG - ) - Fule ) 62
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where F_ (&) is defined by (2.13). Again, this linear integral equation has to be
solved numerically by discretizing the inte, "il. Since, in general,

/ Z dg A (E) # 0 (53)

the integration limit Q has to be adjusted so that the number of electrons is conserved
[8, 13, 24]. The energy of the spinwave excitation is then given by

AEGE™) =2 f dg 2pP(g) - 2n f d€ Apy"7(6) D(E)

+ 27 Fys_ o (65™) + E(Q) = E(Qy) 5.4

where the meaning of E(Q) and E({@,) is the same as in section 4. The conservation
of electrons requires that

Q
E(Q) — E(Qy) = u / RICRE 5.5)

where p is the chemical potential. From the definitions of G(£) and F,,(£),
equations (2.11) and (2.13), we obtain that Ap(z‘s) has the following symmetry
property:
S m
PENE, € = 8 (~g, -6

so that the energy is an even function of E((ij- Since there are 2.5 internal degrees
of freedom, there are 2.5 elemental spinwave branches, one corresponding to each
set of rapidities, m = 0,...,25 — 1. These excitations are soliton-like, ie. the energy
of a finite number of excitations is the sum of the individual excitation energies.

Again, analytic results can be obtained in the two limiting cases n =0 and n = 1.
For the empty band (1 = —2) the excitation energies are

ABSI(E™) = 2(mf2)/{(6™) + [(m + 1)/2]?) (5.6)
while for the full band we have

sin[w{m + 1)/ N]
N cosh[27 €™ /N = cos[n{m + 1)/ N}

AELI(E™) = 6.7

In all cases the energy is a maximum if f;‘f,m] = 0 and tends to zero if iegm)l tends to
infinity.

5.2, Momentum of spinwave excitations

In order to obtain the dispersion relations for the spinwaves, we must find the relation
of the momentum to the parameter £{™, The momentum of the spinwave is given by
the quantum number corresponding to the added rapidity &f}’”]. From the definition

of p{™(£), we have that

{m)

P, =27 / " g oM. (5.8)

-0



The degenerate supersymmetric {-J model 329

Using (2.10) with B,, = oo for m = 0,...,25 — 1 we obtain

pn(€§™) = 2arctan fran ( 2521 wani [ 2]} + T(25 - m)

+2fqd£ p(zs)(f)arctan {tan (2 m; 1) tanh [ (mJ 5)]}

+x{m+ (I —-n}/N (5.9
by straightforward integration. From the definition, equation (5.8), it is clear that
p,, — 0 for &™) — —c0. For &™) = 0 we obuin p,, = 7 — =n(m + 1)/N,
which corresponds to the maximum of the spinwave dispersion. As 5[(,"‘) — oaq,

AE™ S 0and p,, =2x — 2xn(m + 1)/ N, which is the maximum momentum of

the branch.
Analytic results are again available in the limiting cases of an empty and full band.

If the band is empty (Q = o0)
pm(f‘gm}) = Zarctan (2{5"1}/(nz + 1)) + 7 (5.1Ga2)
while for the full band we have

pm(Eg"‘)) = Zarctan {tan (;&ST) [ E(m)]} + %:.—(25 -m}.  (5.100)

5.3. Spinwave velocity

We now analyse the long-wavelength limit of the spinwave excitation spectrum. As
E(m) —o0, the driving erm of equation (5.2) car be expanded in powers of

exp(27r§(mJ/N). Defining ¢ so that
o(€) = Ap{)(€) exp(~2mgy™ [N) /[2sin(n(m + 1)/N)]  (S.11)
we obtain the following differential equation for (£):

Q
&)=~ [ 08 HeIGE - O ~ g op(-2nE/N) 512)

which is now independent of m and &™), The long-wavelength excitation energy is
given by

AEI(ES™ = —o0) = 2sin (w""; 1) exp(2nel™ /N

Q Q x
x {(z+ W [ ewe-2r [ seetepe + %} (5.13)

In the £{™ — —co limit, equation (5.9) can be approximated by

P (5™ — —c0) = 2sin(x(m + 1)/N)

x exp(2x ;™ [N) [1 + j de p‘zs’(e>exp(~2wa/N)] (5.14)
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so that A ES™ and P,, are proportional and the spinwave velocity is obtained as the
ratio of (5.13) and (5.14), ve, = AES /p..

_ (24 ) [5 € w(8) - 27 [T, € o(§) D(§) + 27/ N
1+ [, p°)(€) exp(=2mE /)

Note that v, is independent of m; hence, all spinwave branches have the same
continuum limit, ie. the same spinwave velocity. For N = 2 the spinwave velocity
agrees with the result in [8].

It is straightforward to see that for the full band (Q = 0, ie. the Heisenberg
limit; note that our definition of J differs by a factor of 2 from the one of [20]) the
spinwave velocity is vy, = 2o /N, while v,, = 0 for the empty band.

The spinwave velocity is inversely proportional to the spin-susceptibility derived
in section 3 (see [20]). Their product is equal to

X Ve = (N2 = 1)/127 (5.16)

(5.15)

5w

for all band fillings. This result is not unexpected, since the long-wavelength spin
excitations determine .

4

«

Figure 6. Spinwave excitation energy (in wnits of
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5.4. Resuits

Our numerical results for the spinwave dispersions for V = 2 and four band fillings
are shown in figure 6. They are in agreement with those presented in [7,8]. There is
only one spinwave branch for & = 2. In general there are N — 1 spinwave branches.
We normalize the excitation energy in urits of the hopping mairix element ¢. The
two spinwave branches for V = 3 are shown in figures 7(a) and 7(b), respectively, for
the empty and the full bands and two intermediate band fillings. As discussed above,
AES =0 for P, = 0and p,, = 27 ~ 2xn{m + 1)/N. The momentum of the
excitations is of course only defined modulo 27. The range of momenta for which
there are spinwave excitations is finked to the Fermi surface. The $pin excitation
spectrum for N = 4 and N = 6 is shown in figures 8(a)—~(d) and figures 9(a)—{(d).
respectively, for several electron densities. For n = 1 the spectrum is identical to the
one of the SU(N }-invariant Heisenberg chain.

For small p the excitation energy is proportional to the momentum (except for the
empty band), the proportionality constant being the spinwave velocity. The spinwave
velocity (in units of ¢) for N = 2, 3, 4 and 6 is plotted as a function of band filling in
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figure 10. v, is proportional to the electron density for small n. This proportionality
actually holds over quite a large density range. The spinwave velocity decreases with

N

Since all integral equations are lnear in the densities and so is the energy, the
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Figure 10. Spinwave velocity vee in units of the
hopping matrix element { as a function of band
filfing for N =2, 3, 4 and 6. All branches of the
spinwave specirum have the same spinwave velocity
(long wavelength limit).

superposition principle holds and the energy and momenta of excitations are additive.
The momentum of the combined excitation should be considered modulo 27, It is
now possible to combine charge with spin excitations, e.g., to replace a charge string
of length 25 by two spinwave excitations, one represented by a string of length m
and one of length (25 — m).

6. Concluding remarks

We considered the N-fold degenerate {-J model, which is completely integrable at
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the supersymmetric point ¢ = J = -V |11, 12]. The components may be thought of
as arising from combined spin and orbital degrees of freedom. Note that the model
can be mapped onto a (/N 4 1)-component quantum latiice gas as introduced by
Sutherland [5]. The additional degree of freedom corresponds to the charges. We
extracted the solutions of the Bethe ansarz equations relevant to the ground state
of the Hamiltonian. They correspond to strings of length m, where m =0,...,25.
These string states represent spin—charge bound states of electrons with different spin
components. In the absence of external potentials (magnetic and crystalline fields),
and assuming that the total number of electrons is 2 multiple of N, the ground state
is a spin-singlet and all particles are part of string states of length N,

Although we classified the complex spin and charge rapidities (2.4) as bound
states of electrons with different spin components, they are not bound states in the
real sense, since no actual binding energy is involved (the binding energy is zero).
This is in close analogy to the degenerate Anderson model for a magnetic impurity
(U — oo limit) [19], where similar string states form a complex representation of a
free electron gas. :

We have numerically solved the ground state Bethe ansaiz equations in the
absence of external fields for several band fitlings and degeneracies N. We obtained
the ground state energy, the chemical potential and the zero-field susceptibility. The
ground state energy decrcases monotonically with the number of electrons, while
the p increases with n. Tor a full band the charges do not have dynamics and
the equations reduce to those of the SU(N )-invariant Heisenberg chain. The zero-
field susceptibility is a decreasing function of the electron density. x is expected
to diverge when N,/N, — 0 (or p — ~2) as (2 + p)~Y? as a consequence of
the 1D van Hove singularity. In a finite but small magnetic field the susceptibility
shows logarithmic singularities, which are characteristic of one-dimensional systems
with SU(N)-symmetry and arise due to the interference of the two spinwave Fermi-
surface points [6,20, 21] (there is only a Fermi surface for the spinwaves if at least
one B, # co). The specific heat at low T is proportional to 7. The proportionality
constant -y diverges as (24 p)}~ /2 with n — 0 ( — —2) due 1o the one-dimensional
van Hove singularity. As a consequence of the loparithmic field singularitites the ~
coefficient is singular for all band fillings, in the sense that the limits T — 0 and
H — 0 cannot be interchanged [25]. In particular, if n = [ and N = 2 we have [25]

B . - L . . 1
Jim lim ~(H,T) =4 (1 + \/e/vr) # lim lim v(H,T)=}.

(Note that our definition of J differs by a factor of 2 from the one in [25].)

In sections 4 and 5 we derived the charge and spin excitation spectrum of the
systemn in the zbsence of external poientials. This generalizes the resulis by Bares
and Blatter [7} for N = 2 (the waditional i~J model) to arbitrary degeneracy V.
The system is metallic, i.e. the Fermi velocity i§ finite, except for a totally empty or
full band. There are intervals in momentum Space for which there are no particle-
hole charge excitations. There are N — 1 spinwave branches with a common long-
wavelength spinwave wvelocity. v, increases monotonically with the electron density
n; for small n we have that v, is proportional 10 n. Again, the momentum interval
for which spinwaves are defined is linked to the Fermi surface of the charges. The
spinwave velocity is inversely proportional to the zero-field static susceptibility.

Since the expression of the energy and the integrai equations governing the
excitation spectra are linear in the rapidity density functions, the superposition
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principle holds for any finite number of excitations. The excitation energies and their
momenta are additive, leading to a continuum of excitations for given momentum.
With several branches and many possible combinations of charge and spin excitations,
the continuum of excitations becomes very complicated.
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