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I. Phys: Condens. Matter 5 (1993) 31lL334. PAnted in the LK 

Ground state properties and excitation spectrum of the 
degenerate supersymmetric t-J model in one dimension 

P SChlOttmaM 
Depanment of Plir irs and Center for Materials Research and Tkhnology, Florida State 
Univusity, Bllahassee, FL 32304 USA 

Rseived 1 September 1992, in final form 23 October 1992 

AbsIrncL We mnsider the one-dimensional SU(N)-invariant 1-J model, which 0onsisU 
of electmns with N spin mmponena on a lattice with nearest-neighbur hopping t 
mnstnined bj the acluded multiple occupanq' of the latrice sites and spinechange J 
between neighbouring lattice s i t s .  The model is integrable a1 lhe supenymmetric pint 
t = J .  ?he ground sate Bethe ~ U O Q  equations are analysed and solved numerically 
tor arbitrary band filling and seven1 valuer of N. The ground state energy, the chemical 
ptential and the spin rusceptibility are obtained as a function of band 6lling. The 
elemental charge and Spin acitations are derived for arbitrary N and band SJling. "he 
energy of the charge excitations vanishes at the Fermi surface. The h i  velocity has 
a maximum as a funaion of hand filling, vanishing for the empty and full bands, The 
spinwave velocity is inversely pmponional Io lhe susceptibility. For manly one eleamn 
per Site the charge fluctuations are snppresxd and Uie Betlre mwmz equations map onto 
those of the SU(N)-invariant Heirenkc chain. 

L Introduction 

The two-dimensional Hubbard model is believed to possess the main features 
necessary to explain many of the fundamental low-energy properties of the cuprate 
high-temperature superconductors [l]. The key ingredient is the motion of highly 
correlated electrons within the CuO planes. This refers only to low-energy properties, 
since the higher-energy excitations, as measured e.g. by photoemission, involve several 
bands and their complicated dispersions. In the limit of very large on-site Coulomb 
repulsion the Hubbard model can be mapped onto the t-J model with 2 > J, for 
which numerous properties have been studied with approximate methods [2,3]. It 
has been conjectured [1,4] that the ID and ZD variants of both the Hubbard and t-J 
models, have properties in common. Exact results in ID are often more accessible 
than 2D ones and may provide a testing gound for approaches intended for more 
complex problems. In this paper we solve exactly the degenerate supersymmetric ID 
f-J model, for which there is no direct applicarion to experiments. 

The onedimensional 1-J model for spin 4 was found to be integrable at the 
supersymmetric point by Sutherland [SI. This supersymmetry is related to the SU(3)- 
invariant Heisenberg chain of spin 1. The Bethe unsulz equations, the classification of 
states and the thermodynamic equations for this model were presented in [6]. These 
results were used by Bares and Blatter [7,S] to calculate explicitly the spectrum 
of elementary excitations and by Kawakami and Yang [9] to obtain the exponents 
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314 P Schlottmann 

for the long-distance asymptotic of correlation functions. In [lo] we constructed an 
asymptoticaliy exact solution in the low-electron-density limit for coupling parameters 
deviating from SU(3) symmetry, i.e. t # J and Lee and Schlottmann [ll] extended 
the Bethe ansafz solution at the supersymmetric point to an arbitrary number of 
spin components N .  The thermodynamic Bethe OllSaQ equations for the N-fold 
degenerate supersymmetric i-J model were derived and discussed by Schlottmann 
[12]. The spin and charge excitations of the onedimensional degenerate Hubbard 
model as well as the properties of the associated metal-insulator transition at non- 
zero U (for N > 2) were presented in [13,14]. 

In this paper we extensively discuss the gound state Bethe umue equations and 
derive the excitation spectrum of the ID supersymmetric t-J model with N spin 
components (N = 2.5 + I), generalizing in this way the results of [7,8,12]. The 
procedure to be followed is in complete analogy with that described in [13]. 

The model under consideration is the following 

H = - C P ( C ; + c i t L s  +C;t,,C;r) P +  V C t l i s n ; + l , ,  + J ~ C ~ C i s ' C ; + ' r ' C i t , J  
is i d s '  iss' 

(1.1) 

where the hopping matrix element t has been equated to 1. Here cis annihilates an 
electron at the site i with spin component s, (Is] < S), niS is the number operator, P 
is a projector excluding the mulfiple occupancy of every site, V is a charge interaction 
independent of the spin and J is a spin exchange interaction. The generalized spin 
S can be thought of as composed of spin and orbital degrees of freedom. 

Several special cases of this model are worth noting. 

(i) If J = 0 the spin components do not play a relevant role, and we only 
have to distinguish occupied and empty sites. The modcl then reduces to the spin-4 
anisotropic XXZ-Heisenberg chain. 

(ii) If there is one electron per site there is no dynamics of charges and the system 
is just the Heisenberg chain of spin S with SU(2S + 1) invariance [5]. In addition, 
model (1.1) is integrable for arbitrary band filling in the following uses: 

(iii) J = -V = i l  
(iv) J = V = &I. 
Situations @) and (iv) are related to SU(2S + 2) invariance of the model with 

(2s + 1) spin and one charge degree of freedom. The situation J = -V = 1 
corresponds to the supersymmetric limit of the traditional 1-3 model [ l l ]  (the 1-J 
model represents the high-correlation limit of the degenerate Hubbard model only 
if J < t). The gound state properties and the excitation spectrum of this case for 
arbitrary spin are the subject of this paper. 

The rest of the paper is organized as follows. In section 2 we restate the discrete 
Bethe ansae equations derived previously in [ll]. The structure of the gound 
and excited states is discussed and integral equations relating the densities of the 
corresponding rapidity sets [12] are restated for the zero-temperature limit. The 
zero-field ground state properties as obtained by numerically solving the ground state 
integral equation for the charges are discussed in section 3. The elemental charge 
(adding or removing one particle from the system) and spin excitations are derived 
in sections 4 and 5, respectively, for arbitrary band filling and degeneracy N .  A 
summary and conclusions are presented in section 6. 
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2. Bethe mutz equations 

The diagonalization of the Hamiltonian (1.1) for J = -V = 1 is a straightfonvard 
generalization of the procedure presented in 161. The two-particle scattering matrix 
is given by 

P 
PI - P 2  1 S ( k , , k 2 )  = 

p l  - p 2  + i ' +  P I  - p 2  + i 
where I is the identity matrix and P permutes the spin indices of the two electrons. 
Here p is related to the wavenumber k by p = fcot(k/2). It is easy to verify that 
(21) satisfies the triangular Yang-Baxter relation [I51 and that the scattering matrix 
for a multiparticle scattering process can be. written as a product of two-particle 
scattering matrices, (21). 

The exact solotion of the model is now obtained following a standard procedure 
[ll, 15,161. On imposing periodic boundary conditions, the Ne-particle problem 
reduces to the simultaneous solution of a set of A', eigenvalue equations. This 
eigenvalue problem has been solved by Sutherland 116) for an arbitrary Young tableau 
by means of a sequence of additional ( N  - 1) nested Bethe UnSuQt?. Each Bethe 
ansa& leads to a new eigenvalue problem with the number of spin components 
reduced by one and gives rise to a Set of npidities. This procedure is repeated until 
all internal degrees of freedom are eliminated. As a result, N sets of rapidities 
{&I}, 1 = 0, .. . , N - 1, are obtained, which are self-consistently determined by the 
Bethe ansa& equations (11,121. The set Tor 1 = 0 corresponds to the charge rapidities, 

the other sets are associated with the spin degrees of freedom. All rapidities within a 
given set have to be different. The rapidities are not independent of each other but 
coupled by the discrete Bethe ansfla equations [ll, 121 

ifa (0)  - - p ,  = )cot(k,/2), where {Lo} are the wavenumbers of the particles, while 

1 = 1, ... , N - 1 A . i 0 ~ N e  M,fO a = ] ,  ..., M ,  

(2.26) 
where N ,  is the number of sites in the chain and M, is the number of rapiditis in 
the set {e&"). If ns-,,L denotes the number of electrons with spin component m and 
Mi+, = M i  - n j ,  then necessarily Ne Mu 3 M, 2 M ,  2 . . . 3 MN-, 3 M ,  !E 0. 
This solution corresponds to the Young tableau ( M u  - A l l ,  M I  - M2,. . . , hi',,,-* - 
M,-, ,  M N - l  - M N ) .  Note that the Bethe amua eigenfunctions are only a basis of 
states within this subspace [17]. The energy eigenvalues of the Hamiltonian (1.1) and 
the magnetization are given by 

(2.3~) 

N-I 

s, = i ( N  - 1)N, - M, .  (2.36) 
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The ground state and the excitations of the system are &ben by the self-consistent 
solutions of equations (2.2). The rapidities have, in general, complex values and in 
the thermodynamic limit (large N,, N, and M ! ) ,  they can be classified according to 

(i) real charge rapidities, belonging to the set {tiuJ}, which correspond to unpaired 

(ii) complex spin and charge rapidities, which correspond to bound states of 

(iii) strings of complex spin rapidities, which correspond to bound spin states. 

In the ground state we only have particles in states corresponding to classes (i) 
and (E). The strings of class (iii) represent excited states and will not be considered 
here. Since only electrons with different spin components are scattered, Le. experience 
an effective attractive interaction, we may build spin complexes of up to (2s + 1) 
electrons. A complex of n electrons ( n  < 2 S +  1) is characterized by one real e("-') 
rapidity and in general complex E"' rapidities, I < n - 1, given by 

[I21 

propagating electrons, 

electrons with different spin components, and 

@ = p - 1 )  + (i/2)p 

p = -(n - I - l ) , - (n  - 1 - 3)  ,... , ( n -  I - 1). 

1 < n - 1 < 25' 
(2.4) 

These spin and charge strings form classes (i) and (ii). There are then N = 2s t 1 
sets of real rapidities {&')) in the ground state. Here CI is the running index 
within a set. All rapidities within a given set have to be different. This property leads 
to Fermi statistics for rapidities associated with charges and spin waves, although spin 
waves have an integer spin and are actually hard-core bosons. 

The above rapidities are inserted into equations (2.2) and the resulting coupled 
equations for the real {.&'I) are logarithmized. This generates a set of integer 
quantum numbers for each set of rapidities. In the thermodynamic limit we define 
the usual distribution [unctions p( ' ) (<)  for the real npidities <a) and similarly the 
'hole' distribution functions p(hl)(E). 'Particle' and 'hole' densities are not independent 
in view of the Fermi statistics of the rapidities, but coupled by sets of linear integral 
equations. Fourier-transforming the equations, we have 

= exp(-(I t l)lu1/2). (2.5) 

Here the caret denotes a Fourier transform, p l , q  = min(l,q)-61,9 and 1 = 0, ... ,2S. 
The energy of the system and the number of particles (per site) for each spin 
component, R', are given by 

(2.7) 
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and 

C,, , (w)  = sinh (+ min(q,I)) sinh ( + ( N  - max(q, I))) /sinh ( i w l v )  sinh (4“) . 
(214) 

Here Re denotes real part and li, is the digamma function. The energy can be 
expressed in terms of the hole states for strings of length 2s 

+ 2 x  N, / dE p(”‘ )( C) F2s-,n ( E ) .  (215) 
%=U 

For N = 2 these equations reduce to the Bethe umm equations derived previously 
in [6,8] for the traditional supersymmetric t-J model. For arbitrary N, the kernel 
of the integral equations (210), Le. C?,,,(W), has the characteristic form dictated 
by the SU(N) invariance. This kernel appeared previously in related problems: (i) 
the SU(N)-invariant Heisenberg chain 15,201, (ii) the N-colour Fermi gas in one- 
dimension interacting via a &function potential 118,211, (iii) the Coqblin-SchrieRer 
model [22,23], and the degenerate Anderson model with excluded multiple oocupancy 
of the f level [IS]. 

An alternative formulation of the Bethe onsalz equations for the ground state is in 
terms of the thermodynamic energies for each set of rapidities. The thermodynamic 
energies are defined as 

pY) /p ( ’ )  = exP(€l/T) (216) 
in the limit T - 0. For a small Zeeman splitting they satisfy the following set of 
integral equations 1121: 

c d E )  + 1‘ ~E’Ezs(C‘)G(E‘- E )  
-8 

4 H 
= / Q d E k ( E o F &  - <‘I t 2rF*s-,n(<) - (7n + 1 w . 5  - 47 

(2 18) 
where m = 0, ... ,2S  - 1 and p is the chemical potential. The e , ( < )  are symmetric 
functions of E ,  which decrease monotonically with increasing IC[. The functions 
e,(<) are typically positive for E = 0 and negative for large 5. From their definition, 
equation (216), the functions e , , , (<)  have zeroes at = iB,,. This defines the 
relationship of the chemical potential and the magnetic field with the integration 
limits B,. Note as well that the integral equations determining the p(’)  and the e ,  



The degenerate supersymmetric 1-J model 
~~ 

319 

are the same except for the driving terms. The density functions for particles and 
holes can be derived from the thermodynamic potentials if we modify the driving 
terms in equations (2.17) and (2.18) by replacing 

2 x a c )  - ZnxD(E) 27rF,S-,(<) - 27rzFzs-,(E) 

Differentiating (2.17) and (2.18) with respect to z, we obtain by mmparison with 
equations (2.9) and (210) that 

p(")(E) = (1/27r)&,,/dz 

pL")(E) = (1/27r)d~JBz 

if /<I > E, 

Lf 151 < E, 
(2 19) 

with B,, = Q. 
In the following three sections we discuss properties of the ground state and 

elemental excitations of the degenerate supersymmetric 1-J model which we obtain 
by numerically solving the Bethe unsm equations stated above. 

3. Ground state properties 

In the absence of magnetic and crystalline fields, E,, = CO for 7n = 0, ... ,2S - 1. 
Hence, equations (2.9) and (210) reduce to a single integral equation for p(ZS)(.$) 
(we now suppress the superscript (2.S) in this section). The band filling is controlled 
by the parameter Q, and decreases with increasing Q (Q = 0 corresponds to the full 
band, Ne = N a ,  while for Q = CO the band is empty). Discretizing the integral (using 
about 100 points), the integral equation is then straightforwardly solved numerically 
by iteration. Note that both p ( < )  and ph(<) are symmetric and non-negative (since 
they represent densities of states) functions of <. 

We first consider the empty and full band limits (n = N J N ,  = 0 and 1, 
respectively), which can be treated analytically. 

(i) Empty band. For n = 0 we have (2 = CO and the solution of the integral 
equation for p h ( < )  can straightforwardly be obtained by Fburier transformation 

P ~ ( E )  = ( l / 7 r ) ( N / 2 ) / [ < 2  + ( N / 2 l 2 1 .  0.1) 
The energy of the system is of course zero in this limit and the chemical potential 
.U = -2. 

(ii) Nearly empty band. If n is small but non-zero (low electron density), then Q 
is large but finite, and the integral equation can be solved iteratively by reducing it 
to  a sequence of Wiener-Hopf integral equations. The chemical potential p is then 
slightly above -2 After a lengthy calculation we obtain [G, 11, 121 

Q =  ( 2 + ~ ) - L / 2 { l + ( S / 4 ~ ) ( 2 + p ) L ~ 2 1 n ( 2 + ~ r ) +  ...} 
and to leading order the number of electrons and the energy are given by 

R = N e / N a  = ( N / ~ 1 ) ( 2 +  p) ' / '  

E I N ,  = -2n + rr2n?/3N2 

(3.2) 

(3.3) 
as expected from the mn Hove singularity of a (one-dimensional) free-electron density 
of states. 



320 P Schloumann 

(iu) Full band. The situation of a full band can also be treated analytically. No 
holes corresponds to Q = 0, so that ph 3 0 and 

p(E) = ( l / z N ) R e { + ( i  + 1 / N +  iE/N) - + ( $ t i e / N ) } .  (3.4) 

me following relations are easy to verify 

1.1 = 2 / N { $ ( $  + 1/N) - 
(iv) Almost full band. If Q is small but finite the system has a low density of 

holes. In this case the integral equation (2.9) a n  be solved iteratively [6]. We obtain 
for the number of electrons and the energy 

n = N,/N, = 1 - (2Q/7rN) { $  ($  + 1 / N )  - + ( f ) }  

E / N ,  = (2/N)[+(1+ 1 / N )  - +(1)1-2 

- 2. 

- { ( 2 / N ) [ i ( t + 1 / N ) - J l ( t ) ] - 2 } [ 1 - 1 ~ ] .  (3.6) 
?he general solution of the integral equation (2.9) for p b ( f )  can only be obtained 

numerically. The ground state energy is then calculated via equation (2.15). The 
energy density E / N ,  in units of t and as a function of n is shown in figure 1 for 
several N .  These curves interpolate bctween the empty and full band results derived 
above analytically. 

N=6 
.zoF. ' " ' " ' " " ' " " " 1 '  ' " 

0.0 0.2 0.4 0.6 0.a 1.0 
n 

0.0 

1 .1.0 -4.5m 3 -1.5 

-2.0 
0.0 02 0.4 0.6 0.a 1.0 

n 
Figure 1. Ground slate energy (in units of ihe Chemical potential { I  (in units of the 
hopping mairix element t )  in tlic absence of bopping matrix elrment t )  as a function of the 
atemal t l d s  as a function of llir electron densiry 
n for N = 2. 3, 4 and 6. 

Figure 2 

elcctron denrily I I  for N = 2, 3. 4 and 6. 

The chemical potential is the energy required to add or remove one electron from 
the system, Le. 1.1 = a E / d N , .  A change in Ne implies a modified integration limit 
Q and hence a change in pf'). Hence, we have [S, 13,241 

1.1 = Ia(E/N,)/aQ1/[37.,/3Ql. (3.7) 
Denoting p'(<) = d p ( f ) / d Q ,  we have that p' obeys the following integral equation: 

p'(E) + d(F) + 1;dE' pkCf)G(tf - 0 = -IC(< - Q) + ( ; ( E  + Q I I d Q ) .  (3.8) 
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Note that p ' ( 0  is an even function of e. The numerical solution of this integral 
equation is also straightforward using the method described above. One finally obtains 
that the chemical potential is given by 

(3.9) 
p as a function of n for several N is displayed in figure 2 These curves interpolate 
between the empty and full band limits derived above. 

Next we discuss the static susceptibility at 7' = 0 for arbitrary band filling in the 
small Zeeman splitting limit, In a small magnetic field all B,n (m = 0,. .. ,2S - 1) 
are finite but large. The difference in population of Zeeman levels is proportional 
to H, while the feedback of the field on p(zs) and eZS is proportional to HZ and 
can be neglected. In other words, we use the zero-field result for pcZs) and czs. 
The numerical solution of equation (2.17) for eZs in zero field follows in complete 
analogy with the procedure discussed above for the solution of (29) for pizs). For a 
given Q we determine p so that eZS(*Q) = 0. This is an alternative way to obtain 
the chemical potential, which agrees with the one discussed above. 

Consider now equations (2.18) with the eZS-term (evaluated in zero field) as part 
of the driving term. For sufficiently small magnetic fields, B, >> Q so that the 
right-hand side of (2.18) can be approximated by 

(3.10) 
The driving terms of the corresponding set of integral equations obeyed by the density 
functions p("'), equation (210), are obtained by dropping the field-dependent driving 
term in (3.10) and using the relations (2.19). Using the definition of the magnetization 
it is possible to show that the zero-field and low-field magnetic susceptibilities of the 
system are &en by [6,20,21] 

x ( H ) / x ( O )  = [1+ l / ( N ~ l n H ~ ) + l / ( N I l n H I ) Z I n [ l / ( N I I n H ~ ) ] + ~ . ~ ] .  (3.11b) 
The limit n = 1, i.e. Q = 0, corresponds to the SU( N)-invariant Heisenberg chain. 
In this limit the zero-field susceptibility is given by 

(3.12) 
(Note that the definition of the exchange coupling J here differs by a factor of 2 
with respect of that of [ZO].) The N-dependence of this expression is determined 
by the T = 0 Curie constant of the Heisenberg chain. In figure 3 we show the 
dependence of x ( H  = O)/xHeir on the band filling. Since these curves are almost 
independent of N, only the ones corresponding to N = 2 and N = 6 are presented. 
The susceptibility diverges as n - 0 proportional to (2 + ~ ) - l / ~ ,  as a consequence 
of the one-dimensional van Hove singularity. In a small but finite field we obtain 
logarithmic singularities caused by the interference between the two Fermi poinfs 
(scattering across the Fermi surface) [20,21]. 

X H ~ ~ ( O )  = (1/4nZ)N(NZ - 1)/6. 
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- N=2 
---N;S Figure 3. Zero-field static susceptibility, x ( n ) ,  

normalized to its value for n = I (Heisenberg 
chain) as a Cunction of electron densiry n for 

2 N = 2 and 6. Note that the a w e  is almost 
1 u n i v e d  with N. The susceptibility diverges as 

11 - 0 ai a consequence of ihe onedimensional 
van Hove singularity. 0.0 0 2  0.4 0.6 0.8 1.0 

- s ;  

n 

4. Elemental charge excitations (bolons) 

In this section we study the particle and hole excitation spectrum of charges. Charge 
excitations are obtained by adding or removing a rapidity from the set {E&2s’}. This 
set corresponds to the spin-zero clusters of N electrons, represented by strings of 
length N .  All other sets of rapidities involve spin excitations. Note that these spin 
and charge excitations are decoupled; since the integral equations are linear, the 
superposition principle applies and excitations are additive and independent. Their 
behaviour is soliton-like. The excitation spectrum for N = 2 has been derived in 
[7,8]. We present here the generalization to arbitrary spin-degeneracy. We follow 
a similar procedure to that employed for the one-dimensional Hubbard model by 
Col1 [24] ( N  = 2) and Schlottmann [13] (arbitrary N). We explicitly distinguish hole 
states, i.e. removing one rapidity, and particle states, i.e. adding one rapidity. We Limit 
ourselves to the case B,, = CO, 9 n  = 0, .. . ,2.S’ - 1, Le. the system in the absence of 
external potentials. 

4.i. Hole states 

We first consider the simpler situation of a full band, n = 1 and Q = 0. In the 
absence of holes we have 

lb simpliiy the notation we drop the superscript (2s) in the string density distribution 
function. If one hole is introduced with rapidiry Eo. we have p h ( E )  = ( l/Na)6(C-CO). 
Consequently the rapidities are rearranged and their density changes by the amount 
( I / N , ) A p ( E ) .  From (2.9) we obtain 

A d { )  = -6(E - Eo)  - G(E - E o )  ( 4 4  

and the change in energy associated with the removing of the charge is 

A%(Eu) = (2 /N)Re {‘b ( f  + I / N )  - 1/ )  ( f )  

- 1(,(4 + 1 / N  +iEu/N) + ( 4  + iFu/N)} .  ( 4 4  

( 2 / N )  { J ,  ($ t 1/N) - li>(i)} 

The excitation energy vanishes for 
with J&,l reaching its maximum of 

= 0 (Fermi level) and increases monotonically 
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as Ito/ tends to infinity. 
We now consider hole states in a partially tilled band. Only rapidities with lEUl > 

Q can be removed. Removing a charge rapidity introduces an additional driving term, 
so that the solution of the integral equation is bf the form ph(E)fAph(E)/Na, where 
& ( E )  is theground state distribution and Ap,(<) accounts for the rearrangement of 
the rapidities due to the missing one. Aph(() satisfies the following integral equation: 

The &function on the right-hand side of (4.3) represents the missing [-value, while 
the other terms correspond to the ‘self-energy’, i.e. the redistribution of the rapidities. 
We now isolate the 6-function term in the equation for Aph by writing 

A&(<) = -s(E - [U) + A!%(<). (4.4) 
Here A& satisfies the following integral equation: 

Q 

-9 
= - I  d[’abh(E‘)c~(E’-F)-c(C-EU) (4.5) 

which is similar m the one satisfied by pi,(<), equation (3.S). The numerical solution 
of (4.5) is then straightforward. A,jh has the lollowing symmetry 

A&(S,EU) = A&(-<,-[U). 

The integral J-QQ d< A&(<) does not, in general, vanish. Hence, the integral over 
Aph(S) is not equal to -1 as it should be if exactly one charge has been removed. 
There is an additional contribution which we have neglected so far. By eliminating 
one charge the integration limit Q has also to be readjusted [13,24], since the number 
of particles has changed. This change of Q is small, of the order of l / N a ,  but of 
the same order as A p , ( < ) ,  so that it cannot be neglected. Denoting with Qu and 
Q the integration limits before and alter removing the charge, we have invoking the 
conservation of particles 

(4.6) 

We may either use Q or Qu on the right-hand side of ( 4 4 ,  since the difference is of 
higher order in l/N,,. The energy of the excitation is given by 

AEcb(cU) = ( + /”“odcA&(<))  

Q. 
-2x[Q,dEaPh(E)D(E) - ~ ~ D ( C U )  + E(Q)- E(Qu) (4.7) 

where the last two terms account tor the change in ground state ene rg  due to the 
change in Q. Since Q - Qu is small, we approximate 

where p is the chemical potential calculated before and we used (4.6) to eliminate 
(9  - Qo). 
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4.2 Panicle stat0 

Again we 6rst consider the simpler situation of an empty band, n = 0 and 
Q = 00, which can be solved analytically. In the absence of panicles all the 
density functions p(m) are identically zero. Adding the charge rapidity to yields 
then P @ ~ ) ( E )  = 6(e - tu) and the change of energy is given by (note that for the 
empty band p = -2) 

A&(€U) = X N / 2 ) / [ < :  + (N/2)*1. (4.9) 

me excitation energy vanishes for Itu[ - 00 (Fermi level) and increases monotonically 
when I,$,J is reduced, reaching its maximum of 4/N for tu = 0. 

We now mnsider particle states in a partially filled band. Only mpidities with 
lEol < Q can be added. Adding a charge rapidity introduces an additional driving 
term and changes the distribution of npidities by an amount Ap,(C)/N, which 
satisfies the following integral equation (we again drop the superscript (2.5')): 

(4.10) 

The ,&function on the right-hand side of (4.10) represents the added panicle and the 
integral is the self-energy effect due to the rearranged rapidities. We again write 

= a({ - f U )  + a8h(<) (4.1 1 )  

where A&, satisfies the following integral equation: 

This integral equation is the same one satisfied for holes, equation (4.5). except that 
now < Q. Its numerical solution is then straightforward and A,6,(C,Eu) = 
Afid-E, -<U). 

The energy of the particle is given by 

Q O  

+ 2 x l Q o d <  nh(F)n(F) + 2 r D ( t u )  + E(Q) - E(Qu) (4.13) 

where the last two terms account for the change of the integration limit Q due to 
the addition of one particle. From the conservation of the number of panicles, we 
obtain 

(4.14) 

where is the chemical potentia1. 
Note that, except for the overall sign, the expressions for the hole and particle 

excitation energies are the same, although one is valid for [&,I > Q and the other for 
lEul < Q. Hence, for CO = iQ, their excitation energies are equal and necessarily 
zero. Cu = z ~ Q  corresponds to particles and holes at the Fermi level. 
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4.3. Momentum of charge excitations 

Although the charge rapidities or the wavenumbers {k,} are frequently called 
momenta, they do not represent the physical momentum of the particles and holes. 
The physical momentum is given by the charge quantum number of the particle added 
or removed and hence is related m the density functions p(*')(<) and p f s ' ( c )  via 
their definition [S, 13,241 

(4.15) 

With this definition, the momentum of the charges is zero if IQ1 - *m, i.e. a t  the 
centre of the Brillouin zone. (Note that From the umob for the wavefunction in 
equations (22) the rapidities = f ~ o t ( k , / 2 ) ,  where k, is a wavenumber. Hence, 
the sign of k, correlates with the one of E and while 1k-1 increases, decreases. 
There is a change of branch at E = 0.) The maximum momentum, pma, is reached 
when -, 0.) 

pmar = x - rrn( N - I ) /N .  (4.16) 

The excitation spectrum is then symmetric with p. For tu = iQ, equation (4.15) 
yields p F  = * r n / N ,  where 72 is the band lilling. Recalling that for 1<'l > Q the 
excitations are holes and for lEul < Q they are particles, we have that pF corresponds 
to the Fermi momentum. It  is also clear that the crystal momentum is only defined 
modulo 27r. 

Analytic results can be obtained in the limiting cases of an empty and full band. 
For the empty band the momentum of the added particle is 

(4.17a) P = 2sgn(Ed I(n/2) - arctan (2Eu/N)I 

while for the full band the momentum of the created hole is given by 

r ( $ + I / N + i & / N )  r($-i&JN)] (4.176) 
r ( f + l f N - i & J N )  r ($+ i ( , /N)  ' 

rr 
p =  - + i l n  N 

Here r denotes the r function. 

4.4. Fermi velocily 

The Fermi velocity of the charge excitations is defined as the absolute value of 
dAE,/dp at the Fermi level and is obtained as 

(4.18) 

The denominator is straightfon-iardly obtained from equation (4.19, 

[ d P / d h l ~  = 2*~r'(Q). (4.19) 

In order m get the numerator, we differentiate either equation (4.5) or equation (4.12) 
with respect to Eo. Denoting 

@ ( E )  = ( ~ A / % ( S ) / ~ E U ) E ~ = Q  
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we have that Q satisfies the following integral equation 

and 

(4.21) 

The derivatives of G and D with respect to tu can be expressed in terms of the 
imaginary part of trigamma functions. 

It is straightforward IO see that the Fermi velocity vanishes in both the empty and 
full band limits. 

4.5. Resulls 

The results are obtained by numerically solving the above integral equations. The 
charge excitation spectrum (in units of the hopping matrix element 1) for various 
band fillings is shown in figures 4(0)4(d) for N = 2, 3, 4 and 6, respectively. As 
discussed before, AE,,  = 0 for c,, = Q, i.e. at the Fermi level pF = ?rn/N. Close to 
the Fermi level, the excitation energy is proportional to (7)  - pF), the proportionality 
constant being the Fermi velocity. The Fermi velocity is non-zero if n # 0 or n # 1, 
the latter is implied by the fact that the system is an insulator by construction. The 
Fermi velocity (in units of t )  for N = 2, 3, 4 and 6 as a function of band filling is 
plotted in figure 5. The height of the maximum of vF decreases with N .  

The particlehole continuum for the charge excitations is obtained by adding the 
energies and momenta of a panicle excitation with a hole excitation. The momentum 
of the combined excitation should be considered modulo 2n. For N = 2 there 
are excitations lor every momentum p = p ,  + pZ. This is no longer the case if 
N > 2, where we have intervals in momentum space for which there are no charge 
particle-hole excitations. 

5. Spinwave excitations 

In this section we study elemental spin excitations for the degenerate situation 
(spin singlet state), i.e. in the absence of external fields, so that B, = m for 
m = 0, ... ,2S - 1. In other words, the sets of spin rapidities (strings of length 
less than 2s) are empty, so that it is only possible to add one rapidity (particle 
excitations), but nor tn remove a rapidiry @ole exciration). The ground state consisrs 
of an equal number of electrons with each spin component. Adding one $m) rapidity 
(m < 2s) corresponds to a spinwave excitation with the simultaneous addition of 
(m + 1) electrons (see equation (2.5)) [ch, 13,241. 
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5.1. Elemental spinwaves 

Consider 5, = 00 for all 7n. Adding et"' yields 

p ( l n ) ( [ )  = 6([- [r') (5.1) 
which gives rise to a rearrangement of the charge rapidit is  via equation (29). The 
change in the density of charge npictities is givcn by 

4 

- Q  
A p r ' ( ( )  = - / (I[' Apy ' (< ' )G(< ' -  <) - F,,,([ -[A"') (5.2) 
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where F,,,(E) is defined by (213). Again, this linear integral equation has to be 
solved numerically by discretizing the inte, ,>I. Since, in general, 

(5.3) 

the integration limit Q has to be adjusted so that the number of electrons is conserved 
[S, 13,241. The energy of the spinwave excitation is then given by 

+ 2nFzs-,(Eim)) + E(Q) - E(Qd (5.4) 

where the meaning of E( Q) and E( Qu) is the same as in section 4. The conservation 
of electrons requires that 

E ( & )  - E(Qd = P/' d< Ap$'(O (5.5) 
-9 

where & is the chemical potential. From the definitions of G(c) and F,(E), 
equations (211) and (213), we obtain that Ap$' has the following symmetry 
property: 

A p y ' ( < ,  (rj) = Apfsl( -(, -E,$")) 

so that the energy is an even function of (i". Since there are 2.S internal degrees 
of freedom, there are 2 s  elemental spinwave branches, one corresponding to each 
set of rapidities, m = 0,. . . , 2 S  - 1. These excitations are soliton-like, i.e. the energy 
of a finite number of excitations is the sum of the individual excitation energies. 

Again, analytic results can be obtained in the two limiting cases t~ = 0 and n = 1. 
For the empty band (p = -2) the excitation energies are 

AEc)(Fi")  = 2(m/2)/{(E:m')2+ [(77l+ 1)/212} (5.6) 
while for the full band we have 

In all cases the energy is a maximum if d"' = 0 and tends to zero if 1fh"'l tends to 
infinity. 

5.2. Momentum of spinwave cvcilalions 

In order to obtain the dispersion relations for the spinwaves, we must find the relation 
of the momentum to the parameter E?'. The momentum of the spinwave is given by 
the quantum number corresponding to the added rapidity Cy'. From the definition 
of p i m ) ( [ ) ,  we have that 
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Using (210) with B, = 03 for m = 0,. . . , 2 5  - 1 we obtain 

+ Z ~ ~ d E p $ ) ( F ) a r c t a n { t a n  ( 5 7 )  7rtn+1 tanh ( $ ( . $ " - E ) ] }  

+ r ( m  + I ) ( ] -  n ) / N  (5.9) 
by straightforward integration. From the definition, equation (54, it is clear that 
pm 3 0 for Eh") - -03. For Et"" = 0 we obtain pm = x - xn(m + l ) / N ,  
which corresponds to the maximum of the spinwave dispersion. As Eh") - +CO, 
AEA) 4 0 and p ,  = ZP - Zxn(?n + l ) / N ,  which is the maximum momentum of 
the branch. 

Analytic results are again available in the limiting cases of an empty and full band. 
If the band is empty (Q = 00) 

p,((hm))  = Zarctan (xp)/(nz + 1)) + x (S.lOa) 

while for the full band we have 

p m ( [ i m ) )  = Zarctan [ tan (:?) tanh [$Et""]} + -(2S x - m). (5.lab) N 

5.3. Spinwave velocity 

We now analyse the long-wavelength limit of the spinwave excitation spectrum. As 
tim) -t -m, the driving term of equation (5.2) cm be expanded in powers of 
exp(2n~~m) /N) .  Defining 9 so that 

= ApF'(C)  exp(-2xElm)/N)/[2sin(x(,n + 1 ) / N ) ]  (5.11) 

we obtain the following differential equation for p(<): 

Q 1 
v ( ~ )  = - 1, ~ E ' ~ ( E W ( C '  - E )  - e x p ( - 2 x c / ~ )  (5.12) 

which b now independent of m and [p'. The long-wavelength excitation energy is 
given by 

(5. 13) 

(5.14) 
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so that A E F )  and p ,  are proportional and the spinwave velocity is obtained as the 
ratio of (5.13) and (5.14). vIw = A& (m) / p , , ,  

Note that lvnU is independent of ~ n ;  hence, all spinwave branches have the Same 
continuum limit, Le. the same spinwave velocity. For N = 2 the spinwave velocity 
agrees with the result in [SI. 

It is straightfonvard to see that for the full band (Q = 0, i.e. the Heisenberg 
limit; note that our definition of J differs by a factor of 2 from the one of [ZO]) the 
spinwave velociry is vm = 2 x / N ,  while vsv = 0 for the empty band. 

The spinwave velocity is inversely proportional to the spin-susceptibility derived 
in section 3 (see 1201). Their product is equal to 

(5.16) 

for all band fillings. This result is not unexpected, since the long-wavelength spin 
excitations determine xs. 

X,V, = ( N 2  - 1)/12n 

4 
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Q 

. - - 
z 2  w 

4 ,  
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Pi~urc  6 Spiinvavc ucirarion energy (in units of 
rlie liopping mairk element 1 )  as a function of 
crystal momentum over x for N = 2 and several 
h n d  fillings. The mnze of the momenlum interval 
of 1 h ~  excitation depends on Uie electron density 

p l z  m d  is I C I B I ~ J  io ilie'i Fermi surface of Uie char&. 

5.4. RrSUf lS  

Our numerical resula for the spinwave dispersions for N = 2 and four band fillings 
are shown in figure 6. They are in agreement with those presented in [7 ,S] .  There is 
only one spinwave branch for N = 2. In general there are N - 1 spinwave branches. 
We normalize the excitation energy in units of the hopping matrix element 2. The 
two spinwave branches for N = 3 are shown in figures 7(0) and 7(b), respectively, for 
the empty and the full bands and two intermediate band fillings. As discussed above, 
A E F )  = 0 for p, ,  = 0 and p m  = 2a - 2mr(?n  + l ) /N.  The momentum of the 
excitations is of course only defined modulo 2a. The range of momenta for which 
there are spinwave excitations is linked to the Fermi surface. The spin excitation 
spectrum for N = 4 and N = G is shown in figures S(n)-(d) and figures 9(u)-(d), 
respectively, for several electron densities. For n = 1 the spectrum is identical to the 
one of the SU(N)-invariant Heisenberg chain. 

For small p the excitation energy is proportional to the momentum (except for the 
empty band), the proportionality constant being the spinwave velocity. The spinwave 
velocity (in units of 1 )  for N = 2, 3, 4 and G is plotted as a function of band filling in 
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(b) $1 = 0.659, (c) rb = 0.414 and ( d )  71 = 0. n i r  range ol the momentum interval of 
the acilrltion depends on Uie elecimn densily and Ls relaled to llie Fermi surface of the 
cliarges. 

figure 10. v, is proportional to the electron density for small n. This proportionality 
actually holds over quite a large density range. The spinwave velocity decreases with 
N .  

Since all integral equations are linear in the densities and so is the energy, the 
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Figure 10. Spinwave velocity vw in units of the 
lhopping matrix element 1 as a function of band 
filling for N = 2 3, 4 and 6. AI1 branches of the 
spinwave spectrum have tlie Same spinwave velocity 
(long wavelength limit). 

superposition principle holds and the ene ra  and momenta of excitations are additive. 
The momentum of the combined excitation should be considered modulo 2 x .  It is 
now passible to combine charge with spin excitations, e.g., to replace a charge string 
of length 2.5 by two spinwave excitations, one represented by a string of length m 
and one of length (2.5’ - m). 

6. Concluding remarks 

We considered the N-fold degenerate l-J model, which is completely integrable a t  
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the supersymmetric point t = J = -V [II, 121. The components may be thought of 
as arising from combined spin and orbital degrees of freedom. Note that the model 
can be mapped onto a (N + 1)-component quantum lattice gas as introduced by 
Sutherland [SI. The additional degree of freedom corresponds to the charges. We 
extracted the solutions of the Bethe ansae equations relevant to the ground state 
of the Hamiltonian. They correspond to strings of length m, where n = 0,. . . ,2S. 
nese string states represent spinxharge bound states of electrons with different spin 
components. In the absence of external potentials (magnetic and crystalline fields), 
and assuming that the total number of electrons is a multiple of N ,  the ground state 
Q a spin-singlet and all particles are part of string states of length N .  

Although we classified the complex spin and charge npidities (2.4) as bound 
states of electrons with different spin components, they are not bound states in the 
real sense, since no actual binding energy is involved (the binding energy is zero). 
This is in close analogy to the degenerate Anderson model for a magnetic impurity 
(U + CO limit) 1191, where similar string states form a complex representation of a 
free electron gas. 

We have numerically solved the ground state Bethe nnsaiz equations in the 
absence of external fields for several band lillings and degeneracies N .  We obtained 
the ground state energy, the chemical potential and the zero-field susceptibility. The 
ground state energy decreases monotonically with the number of electrons, while 
the p increases with n. For a full band the charges do not have dynamics and 
the equations reduce to those of the SU(N)-invariant Heisenberg chain. The zero- 
field susceptibility is a decreasing function of the electron density. x is expected 
to diverge when N J N ,  i 0 (or JL - -2) as (2 + I . L ) - ' / ~  as a consequence of 
the ID van Hove singularity. In a finite but small magnetic field the susceptibility 
shows logarithmic singularities, which are characteristic of one-dimensional systems 
with SU(N)-symmetty and arise due to the interference of the two spinwave Fermi- 
surface points 16, U), 211 (there is only a Fermi surface for the spinwaves if at least 
one B, p CO). The specific heat at low T is proportional to T. The proportionality 
constant y diverges as (2+  p) - ' / *  with '11 - 0 ( p  - -2) due to the onedimensional 
van Hove singularity. As a consequence 0 1  the logarithmic field singularitites the y 
coefficient is singular for all band fillings, in the sense that the limits T -+ 0 and 
H i 0 cannot be interchanged [25]. In particular, if 7~ = I and N = 2 we have (2.51 

(Note that our definition of J differs by a factor of 2 from the one in [El.) 
In sections 4 and 5 we derived the charge and spin excitation spectrum of the 

system in the absence of external potentials. This generalizes the results by Bares 
and Blatter [7] for N = 2 (the traditional t-J model) to arbitray degeneracy N .  
The system is metallic, i.e. the Fermi velocity is finite, except for a totally empty or 
full band. There are intervals in momentum space for which there are no particle- 
hole charge excitations. There are N - 1 spinwave branches with a common long- 
wavelength spinwave velocity. U, increases monotonically with the electron density 
n; for small n we have that vw is proportional to ?L. Again, the momentum interval 
for which spinwaves are defined is linked to the Fermi surface of the charges. The 
spinwave velocity is inversely proportional to the zero-field static susceptibility. 

Since the expression of the energy and the integral equations governing the 
excitation spectra are linear in the rapidity density functions, the superposition 
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principle holds for any finite number of excitations. The excitation energies and their 
momenta are additive, leading to a continuum of excitations for given momentum. 
With several branches and many possible combinations of charge and spin excitations, 
the continuum of excitations becomes vely complicated. 
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